
Design of a Deep Space Network Scheduling Application

Bradley J. Clement and Mark D. Johnston

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

{bclement, mdj}@jpl.nasa.gov

Abstract
The Deep Space Network (DSN) is a collection of ground
antennas used to provide communication services for space
missions at and beyond Earth. Currently, nearly 30 people
work full time to schedule 61 missions over a ten year
horizon using a few disconnected tools. The large manual
and collaborative effort to generate schedules and resolve
conflicts has spurred an effort to build a new scheduling
application incorporating automated scheduling. We will
describe the basic design of this application, the Service
Scheduling Subsystem (SSS), and discuss some of the
design issues. We describe the messaging interface to the
automated scheduler, including the request and constraint
language and support for user-defined constraints. There
are many other features that we believe will heavily
influence the success of the application. These include an
efficient schedule editing interface, request management,
non-interfering suggestions from automated scheduling,
user-defined alerts, hypothetical schedules, and automated
negotiation.

Introduction
The Deep Space Network (DSN) consists of three
complexes of ground antennas located in California,
Madrid, and Canberra. There are 16 antennas that range in
size from 26 to 70 meters in diameter. This network
primarily supports interplanetary missions and radio and
radar astronomy but also supports some Earth orbiting
missions. DSN services for spacecraft include command
uplink, data downlink, tracking, and navigation. While
150 missions are listed as DSN users, about 20 spacecraft
are allocated resources in a 4-month schedule.

Schedules are currently manually generated a year into the
future with allocations to the minute. These are currently
generated a week at a time and average 370 tracks
(allocation of an antenna to a mission over a time period)
per week. These tracks are typically 1 to 8 hours long and
must be allocated in a viewperiod (i.e. a time period when
the spacecraft is visible to the antenna). There are around
1650 of these viewperiods defined per week. Clement and

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Johnston describe the scheduling problem in greater detail
(2005).

The greatest inefficiency of the current scheduling process
is not in generating low-conflict schedules but in trying to
meet the ill-specified requests of the missions. (The DSN
calls these requests “requirements,” but we will call them
“requests” to avoid confusion with software requirements.)
The requests used for generating schedules are currently
only specified in hours/week per antenna. DSN schedulers
need more information to determine the acceptable
duration and frequency of the tracks generated. While
missions convey some of this information over the phone
or e-mail to schedulers, there are no records of this
additional request information, and subsequent proposed
schedule changes often conflict with the intended requests.
These changes often affect multiple missions, resulting in
frequent meetings, e-mails, and phone calls to rework the
schedule.

Historically, scheduling for the DSN has been split into
three horizons (0 to 8 weeks, 8 weeks to 2 years, and
beyond 2 years) with more detail and conflict checking for
nearer-term schedules. The missions have scheduling
representatives who work with other groups of schedulers
who can update the database. Each group has their own
scheduling tools with almost no overlap. Currently, there
are around 30 full time employees scheduling for the DSN.

A working group at the Jet Propulsion Laboratory (JPL)
developed a set of design principles for an improved DSN
Scheduling process and system:

♦ Seamless scheduling for all planning horizons
♦ Remove artificial temporal boundaries
♦ A master schedule always exists, visible to all users
♦ A single process and tool suite is used by all classes of

users
♦ Requests and schedules are fully traceable
♦ Conflicts are resolved at the lowest level possible, peer-

to-peer by default
♦ Meetings are called only as needed (e.g., to resolve

difficult conflicts or to address an emerging asset
contention period)

♦ Workspaces are provided to users to develop requests
(especially for what-if analysis)

♦ Need both web-based and workstation-based capabilities
♦ Distinguish global (shared) workspace and local

(private) workspace; private workspace may span a set
of peers

♦ Need scalability (loading, # users, # assets) and
extensibility (evolving technology)

The most dramatic change to the process will be to give
missions direct control of the schedule. Instead of having
to help another group of schedulers understand their
requests and then check the resulting schedule, the
missions will be able to directly change the tracks in the
schedule for their mission.
Based on the recommendations of the working group, JPL
has begun development of a Service Scheduling Subsystem
(SSS). The users of this system would be the current
schedulers (who work out the logistics of scheduling),
mission operations staff (who provide the
objectives/requests of scheduling), managers (who look at
resource availability and perform what-if analysis for
different mission scenarios), and antenna complex
maintenance staff (who must ensure that the antennas
serviced regularly to maintain operability). The basis of
the design of the SSS is a set of functional requirements
provided by a representative group of users.

Service Scheduling Subsystem
The major functions of the SSS are a graphical user
interface (GUI), data management, automated scheduling,
and reporting, as shown in Figure 1. We describe some of
the design issues related to these functions, giving special
attention to an automated scheduling service, called the
Scheduling Engine (SE). The extension of the request
language is reported elsewhere (Clement & Johnston,
2005).

 The functions provided in the subsystem as depicted in
Figure 2-1 include a:
♦ User Interface

The User Interface function provides a user with the
interactive graphic displays and text input and
output mechanisms needed to enter all relevant
scheduling items and to display them as well as the
schedules generated.

♦ Database Management
There may be more than one database with this
subsystem, but there shall be only one master
schedule. In addition to the master schedule, a
record of requirements transactions or change
history, along with the chronology of requirements
input for traceability (of scheduled activities to

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

original requirements), management of private
workspaces, and contingency schedule support is
contained in this function.

♦ Schedule Generation
The automatic Schedule Generation function
consists of several elements necessary for
maintaining the master schedule and Private
Workspace schedules. These elements include
retrieving up-to-date view periods and equipment
status. The heart of the scheduling function is a
scheduling engine that generates schedules, finds
conflicts, and then reduces the number of conflicts
in the schedule.

♦ Reporting
The Reporting function provides network load
forecasts for supporting ‘what-if’ studies and other
reporting features for the subsystem including user
defined reports, conflict reports, metrics, view
period files for sequencing, allocation files for
sequencing, and traceability reports.

The data flow among these major components is shown in
Figure 2. Some amount of functionality will be executed
on the user’s computer for the user interface. Part of this
involves administration to manage user permissions, to
update the list of assets and when they are available, and to
modify constraint rules describing legal allocation of
resources. For example, two spacecraft may use the same
antenna if only one is uplinking and if the antenna can
point to both spacecraft at the same time (e.g. both at
Mars). These kinds of rules change over the years when
new service capabilities or new kinds of missions come
along. The Service Preparation Subsystem (SPS)
calculates and stores viewperiod information based on
trajectory. These calculations take into account many
physical properties of antennas, including cable wrap and
keyhole constraints. They are calculated independently
from the schedule by always “stowing” the antennas back
to a neutral position after every track.

Scheduling Engine
The intended use of automated scheduling is to provide
suggestions for schedule changes based on request
changes. This also includes generating a schedule from
scratch based on bulk input of requests. Automated
scheduling is made available to the rest of SSS as a
network service using messaging.

User interaction with the SE is session-oriented. To begin
any interaction, the user initiates a session which persists
until the interaction is complete, or until the session times
out and is destroyed by the SE. Interactions that refer to
non-existent sessions will return an error status.

Session initiation incorporates an authentication and
authorization process, which makes use of a standard
authentication and authorization mechanism used
elsewhere in SSS. For the purposes of this interface,

sufficient information must be provided in the interface to
enable appropriate authentication and authorization of the
user.

Initiate Session Request – initiates a session for
scheduling and includes information about the user, the
purpose of session, and timeout conditions.

Initiate Session Response – the status of the session as a
response to an Initiate Session Request message, which
includes a session ID among other information described
below. All request messages are processed in a session
identified by ID.

Terminate Session Request – terminates a specified
session, possibly in the middle of processing other
messages.

Status Request – requests status of a specific session

Status Response – the status which includes whether a
session exists, is “ok,” has an error, and/or is busy; what

fraction of processing has completed; a description of any
error; the session ID; an ID for the current or last
completed processing step (to use as a savepoint); and the
timeout conditions

Generate Schedule Request – generates a schedule of
tracks with instructions on what requests/requirements to
schedule, the time range within which to schedule, what
schedule and viewperiod data to take into account (e.g.
missions, assets, workspace), whether to return the entire
schedule or just differences, a time limit for processing,
scheduling strategies to use, any changes to default
constraint rules

Generate Schedule Response – the generated schedule,
the changes made to the schedule, or both

Identify Conflicts Request – requests conflicts with
constraint rules and/or requests in a specified schedule
(time range, which missions, assets, workspace) and within
a specified processing time limit

Figure 1: Service Scheduling Subsystem Description

Figure 2. Data flow among components of SSS and the SPS database
.

Identify Conflicts Response – the status and a set of
conflicts. A conflict includes a type, attributes, and
associated tracks.

Resolve Conflicts Request – this is the same as the
Generate Schedule Request message except there are no
request/requirements to schedule.

Resolve Conflicts Response – this has the same structure
as the Generate Schedule Response message.

Apply Schedule Changes Request – schedule changes to
apply to a session, possibly in the middle of processing
other messages

Apply Schedule Changes Response – the session status
in response to applying schedule changes

Terminate Processing Request – terminates processing
of any prior request messages

Undo To Step Request – reverts the schedule back to its
state when status was reported for the given step ID.

Undo To Step Response – the session status in response
to an Undo To Step Request message

Figure 3 illustrates an example of interactions that occur
when a user generates a schedule. The participants in this
diagram include:
1) SSS scheduler user: this represents the customer for

the schedule, working through other components of
SSS (e.g. client GUI or web-based interface). (Note
that the end user does not directly interact with the
SE.)

2) SE manager: this is the server process that interacts
with the user to handle the generate schedule request,
and with internal elements of the schedule engine to
satisfy the request. The SE manager is always online
to handle user interactions.

3) SE session: a transient process or set of processes that
perform the computational and database actions
required to satisfy a user request, or a related series of
requests. Because a session maintains the state of a
particular interaction with a user, incremental
interactions are readily supported without long delays
for re-initialization. Many sessions may exist at one
time within the SE, to handle many simultaneous user
interactions. They may be distributed across multiple
hardware components for performance and load
balancing.

4) SSS DB: the SSS database, from which schedule and
related data is retrieved, and to which schedule
changes and status data is stored. The SE session may
also connect to the SPS database, for viewperiod and
asset status/schedule data, but that is not shown in this
diagram.

This message interface to the SE enables a wide variety of
ways to schedule on behalf of a user in terms of who (or
what) submits messages and when they are submitted.
One approach briefly considered was to not allow the
users to make edits to the schedule and have the SE
schedule all requirements and resolve all conflicts. Thus,
the users would manage their schedules by editing their
requirements. Instead, we decided that the SE should
only offer suggestions and that only the user could
commit suggested changes to the database. Because
conflict resolution is the responsibility of the users,
missions will want to schedule their requirements as early
as possible in order to resolve conflicts as early as
possible. While there is no formal prioritization of
missions or their requests, it is usually common sense
which mission will win a fight for a resource. For
example, launches and orbit insertion take priority over
telemetry, and primary missions have precedence over
extended missions. Thus, in a collegial atmosphere, there

DB

SPS

DB

SSS

Client

GUI

Server

Data
Services

Scheduling Engine

Reporting

schedule changes & conflicts

schedule & conflict resolution requests

schedule & request updates

Admin
user acct., asset avail., &
constraint rule changes

vi
ew

pe
rio

ds

sc
he

du
le

s,

re
qu

es
ts

,
us

er
 a

ut
h.

,
co

ns
tra

in
t r

ul
es

,
as

se
t a

va
il.

schedules, requests, & asset availability

VPs DB

SPS

DB

SSS

Client

GUI

Server

Data
Services

Scheduling Engine

Reporting

schedule changes & conflicts

schedule & conflict resolution requests

schedule & request updates

Admin
user acct., asset avail., &
constraint rule changes

vi
ew

pe
rio

ds

sc
he

du
le

s,

re
qu

es
ts

,
us

er
 a

ut
h.

,
co

ns
tra

in
t r

ul
es

,
as

se
t a

va
il.

schedules, requests, & asset availability

VPs

Figure 3: UML sequence diagram of interactions for the “generate schedule” scenario

is no reason to require all missions to supply their
requests at the same time for a third party to schedule.

Another simple approach to using the SE interface would
be to have a webpage where the user fills out the fields of
different messages and the SE processes them. However,
it is more beneficial to predict what the user might want
to process and make unobtrusive suggestions. For
example, if a user works only in a few private
workspaces, once the user log into SSS, SSS can invoke
the SE to resolve any conflicts in those workspaces. This
could even be done when the user is offline and a
schedule change affects a private workspace. If the user
is drafting new requirements, there is no point in waiting
for the user to push a button to invoke the SE. The SE
could be hypothetically scheduling the requests (in its
own private workspace) as the user drafts. This can be
very useful in visualizing the requirement as a potential
schedule and indicating to the user mistakes where the
specified request is not what is intended. Having
solutions ready when the user wants them could be the
difference in whether a system like SSS is successful.

Another intended use of the SE interface is to allow users
to “bend the rules” in order to more flexibly explore
hypothetical changes by selectively choosing what
schedule and constraint data to schedule against. This is
especially useful in determining whether to change
requirements to resolve a conflict. For example, a user
may have hardened a requirement to lock down on a
particular time and antenna so that the mission could
assume that the schedule was fixed in order to continue
operations planning. However, if another mission
requested the same resources for a more critical activity,
then the user could easily disable the request to lock down
on the time and resource and explore possible changes.
Users can also override user authorization constraints on
what mission’s data they can modify in order to explore a
ways other missions can resolve the conflict. Then, the
workspace can be sent as a proposal to the affected
missions to get their approval for the changes. A future
work item is to schedule based on multiple objectives so
that users can propose schedule changes that benefit
multiple missions or minimize the concessions needed to
resolve a conflict.

A significant challenge for the SE is being able to
schedule for user-definable constraints. If constraint rules
for antennas and missions change over the years, it will be
costly to make code changes to be able to schedule for the
new rules. Thus, it is important that the SE (in effect) be
able to schedule for unknown problems. We take a
somewhat passive approach by allowing constraints to be
specified as SQL queries and taking general approaches to
rescheduling that we hope to be effective. The idea is to
recognize conflicts as SQL queries that return records
with track identifiers. Then, those tracks are considered
to be involved in the conflict(s) and are possibly causing
the conflict(s), so they will be considered for
rescheduling. A local search approach is effective at
rescheduling with minimal changes. Both local search
and exhaustive search algorithms can be used in
conjunction to reschedule with minimal changes (Clement
& Johnston, 2005).

Data Management
There are a few subtle issues in managing workspace,
request, and change history data and implementing an
undo mechanism. The DSN users want change history in
order to analyze how a mission’s requests have changed
over time (to see if the mission is asking for more
resources than initially agreed to by NASA, for instance).
Undo is simply used to back out of changes while editing.
Undo information is basically the same as detailed change
history for a short period time, so there is no need to have
separate representations and storage for these similar
concepts.

One basic question to answer is how will schedule data be
committed to the master schedule or to a workspace. One
choice is SSS automatically commits every detailed edit
to the database, and the undo mechanism can reverse edits
made in prior SSS sessions. Another approach is to
commit changes only when the user explicitly saves the
edits, in which case undo/change history information
could be stored up until the last save, and prior saves
could be change history checkpoints. Then, for how long
should undo/change history information be saved? Our
current thought is that without an explicit save
mechanism, unintended changes could more easily be
committed without notice, so we lean towards having an
explicit save. Undo/history information could be kept at
larger granularities for older data. For example,
checkpoints could be saved once a week for changes
made more than 6 months ago.

Now what if two users have permissions to the same
mission, and one wishes to undo their committed edits
even though the other user committed edits concurrently?
Should the undo not be allowed? Should it only be
allowed if also undoing the edits of the other user?
Should no more than one user have permissions to the
same mission (or same mission and timeframe)? If the

users’ edits are in non-overlapping timeframes then it is
possible to undo the edits of one without the other, but if
only the tracks edited are different, it is not obvious how
to determine separability since one user’s edit could be
indirectly caused by the other’s even if they involve
different tracks. While we wish to be able to smartly
detect whether user changes are separable in SSS, this
may require a lot of development, so we aim to first not
bother with separating edits and to request confirmation
from users before allowing them to undo other users’
edits.

Workspaces are schedules derived from the master
schedule or another workspace, and they can easily
become inconsistent. For example, if workspace B is
derived from workspace A, and some user attempts to
delete a track in A that B has modified, what is the
appropriate behavior?
1. The track is not allowed to be deleted in A.
2. The track is deleted only in A, and committing B (after

a warning) will add the track back to A.
3. The track is deleted in A and in B (and users of B are

warned).
4. The track is deleted in A, and users accessing B are

notified of the deletion and must resolve the
inconsistency before committing any more changes
(or the possible resolution choices are listed for the
user select).

We believe the fourth option is the safest, but the third
option is much easier to implement while still being
reasonable.

The latest version of Oracle (10g) has a workspace
management feature that allows the database to manage a
workspace data as changes to another workspace (or the
master). It appears that the SSS workspaces can be easily
implemented using OWM (Oracle Workspace
Management). Change history checkpoints are also just
changes relative to other data, so it is also possible that
change history and even an undo mechanism could be
implemented in OWM.

Managing request data is another challenge for SSS.
Users want to know what requests have been satisfied,
what have not, and how that has changed over time. The
database needs to maintain a link between a request and
the tracks in the schedule that fulfill it (or try to fulfill it).
Users also want to edit the schedule directly and
independently of the requirements. A problem arises
when a user’s edits conflict with the associated request,
but the user wants the edits. In the past the integrity of
requests was enforced such that edits were not allowed to
violate them, but the users explicitly asked to break the
link between the requests and the schedule because it was
too annoying to edit the requests in order to edit the
schedule. SSS is required to maintain this link, so either
the schedule is allowed to disagree with the requests (and
the user is not pestered with conflict messages), or the

requests must be automatically repaired to agree with the
schedule edits. A simple way to repair a request is by
using an override request where one requirement
supersedes or replaces the other. The overriding request
can simply be to have the track as edited, and it overrides
the prior violated request. The disadvantage to adding
overriding requests is that many edits can lead to a
bloating of requests such that they are difficult to manage.
We find that either of these solutions is acceptable and
hope to provide both capabilities in SSS.

User Interface
The user interface design is arguably the most important
part of SSS since it is difficult to create intuitive, efficient
user interfaces, and there are no greatly successful mixed-
initiative planning applications to serve as a model for
SSS. Creating a user interface for editing temporal
constraints in MAPGEN for the Mars Exploration Rover
mission was the key to its adoption (Bresina et al., 2005),
but editing temporal constraints is just one aspect of
creating requirements. PASSAT (Plan-Authoring System
based on Sketches, Advice, and Templates) is an
ambitious vision for interactive tools for general mixed-
initiative planning (Myers et al., 2003) and builds on a
prior mixed-initiative system (SIPE-2) that has had
success in military domains (Wilkins, 1993). We try to
follow some of their design principles. By providing
suggested schedule changes to meet higher level requests,
SSS helps users fill out sketches of plans. The
automation of scheduling is completely controllable by
the user since the SE only provides suggestions, and only
the user can commit changes to the database. SSS is
flexible like PASSAT in its ability to allow users (in a
workspace) to turn constraint rules on and off, to lock and
unlock track timing and asset allocations, to modify tracks
of other missions, to override requests when making
inconsistent edits to the schedule, and to choose which
parts of the schedule (missions and assets) to consider
when scheduling. We increase usability like PASSAT by
allowing checkpoints to be saved and planning operations
to be undone. While PASSAT shares many of the same
user interface objectives as SSS, there are other notable
mixed-initiative planning systems that Myers et al. briefly
describe as related work (2003).

As mentioned earlier, users can send or share private
workspaces to propose changes a group of missions can
make to resolve a conflict. Using an automated scheduler
to recommend solutions can greatly reduce human effort
in finding resolutions to conflicts, but it does not relieve
the communicative part of the negotiation process. One
approach is to use an automated multi-objective scheduler
to try to find solutions that favor all missions involved.
This can reduce the number of rejections and
counterproposals in the negotiation. Another
complementary approach is for the mission to allow SSS
to generate proposals and responses automatically. While
the user would not want the system to make all decisions,

in some cases the decision is obvious. For example, the
system should always refuse proposals to reschedule a
critical track and should always accept proposals that
fulfill unmet requirements. For proposals to which the
system may not automatically respond, it can make
suggestions, including counterproposals (based on multi-
objective scheduling). As users gain more confidence,
they can define situations in which the system is allowed
to respond automatically. Not only can this reduce the
human involvement in negotiation, but also more
negotiations can take place in order to create better
overall schedules. This same idea applies to a single user
scheduling for a single mission—the user could authorize
SSS to make scheduling decisions without user-
intervention under certain conditions. These conditions
could be specified as SQL and processed similar to user-
defined constraint rules.

Other required features of SSS are user-definable
notifications (such as e-mail when a change conflicts with
a user’s mission) and user-definable reports. Both of
these are similar to the user-definable constraints and
user-definable automated response conditions. The
underlying language can be SQL. A challenge is how to
get users to express SQL through a GUI without having
them learn SQL. As this is a common database usability
issue, existing tools may work suitably. The user-defined
reports have an extra layer of complication in how to get
users to express a graphical layout of data return from
SQL queries. Again, there are existing approaches that
may be fruitful (e.g. cascading style sheets).

There are many other user interface issues that we have
yet to work out. One particularly important aspect of the
user interface is how the user will interact with the
scheduling engine. In the Scheduling Engine section, we
discuss ways that the SE could be invoked efficiently, but
the manner in which suggestions are presented to the user
is equally important. Another is drag-and-drop editing of
tracks—how can a user use a mouse to place a track to
start on a specific minute in a Gantt chart displaying a
week schedule?

Other Related Work

In general, space applications often differ from others in
that scheduling requires rich languages for modeling
temporal relationships, spacecraft instruments, and
dynamics (e.g. Eggemeyer et al. 1990, Muscettola et al.
1998, Chien et al. 2004, and Ai-Chang et al. 2004). For
DSN scheduling, the complexity of antenna resources is
removed by restricting how they can be used. However,
mission requirements for DSN resources are not trivial to
model (Clement and Johnston, 2005).

There has been much work aimed at automating the DSN
scheduling process. For many years, the Operation

Mission Planner (OMP-26) used heuristic search to
allocate 26-meter antennas to missions and linear
programming to adjust track time intervals (Kan et al.
1996). Other automated scheduling tools were research
projects and were never deployed. LR-26 is a
customizable heuristic scheduling system also for the 26-
meter antennas using Lagrangian relaxation and constraint
satisfaction search techniques (Bell 1997). The Demand
Access Network Scheduler (DANS) expanded the scope
to include all antennas using a heuristic iterative repair
approach (Chien et al. 1997). These systems schedule
mission requirements of the form, "four 15-minute tracks
every day." In this paper, we consider an approach that
combines some of the strengths of these systems. Other
GUI planning tools that have been used for forecasting,
analysis, and manual scheduling include TIGRAS
(Borden et al. 1997) and FASTER (Werntz et al. 1993).

Other systems have investigated oversubscribed
scheduling problems that capture the basic constraints of
DSN's mid- to long-term resource allocation. The Air
Force Satellite Control Network (AFSCN) also schedules
satellite communications requests, on a larger number of
satellites and ground stations, but limited to one day at a
time. Requirements are more simply specified as an
ordered list of resource and time window pairs
(Barbulescu, Watson et al. 2004; Barbulescu, Whitley et
al. 2004). For this problem, which exhibits "plateaus" in
the search to minimize the number of conflicting
activities, local repair techniques have been found less
effective than approaches which make more moves at
once. Another satellite scheduling problem is that of fleets
of Earth observing satellites where the activities to
schedule have similar kinds of viewperiod constraints, but
additionally require onboard resources such as
instruments and data recorders (Frank, Jonsson et al.
2001). In this problem, however, the different requests are
prioritized, and the goal of finding a "best" subset to fit on
the schedule can be addressed with a greedy approach
using texture-based heuristics, as in e.g. (Beck, Davenport
et al. 1997).

Conclusion
The development of SSS is a unique opportunity to
deploy mixed-initiative scheduling system. There is
strong support from users to implement this new
scheduling application, and automated scheduling is
recognized as an essential ingredient to its success.
Exploring approaches to meet the requirements placed on
SSS has uncovered many general mixed-initiative
planning design issues that strongly impact the user’s
flexibility and control of scheduling. In particular, the
interface for managing requests and suggesting changes
from a scheduling engine must be carefully designed to
avoid taxing the user.

Acknowledgments
The ideas and design decisions for the SSS are a product
of many individuals thinking about this problem over
many years, of which the authors are but two. The
research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

References
Ai-Chang, M., J. Bresina, L. Charest, A. Chase, J. C.-J.
Hsu, A. Jonsson, B. Kanefsky, P. Morris, K. Rajan, J.
Yglesias, B. G. Chafin, W. C. Dias and P. F. Maldague
(2004). "MAPGEN: mixed-initiative planning and
scheduling for the Mars Exploration Rover mission."
IEEE Intelligent Systems 19(1): 8-12.

Barbulescu, L., J.-P. Watson, L. D. Whitley and A. E.
Howe (2004). "Scheduling Space-Ground
Communications for the Air Force Satellite Control
Network." Journal of Scheduling 7(1): 7-34.

Barbulescu, L., L. D. Whitley and A. E. Howe (2004).
“Leap Before You Look: An Effective Strategy in an
Oversubscribed Scheduling Problem”. AAAI 2004.

Beck, J. C., A. J. Davenport, E. M. Sitarski and M. S. Fox
(1997). “Texture-Based Heuristics for Scheduling
Revisited”. AAAI 1997.

Bell, C. (1992). "Scheduling Deep Space Network Data
Transmissions: A Lagrangian Relaxation Approach,"
Technical Report, Jet Propulsion Laboratory.

Borden, C., Y. Wang, and G. Fox (1997). “Planning and
Scheduling User Services for NASA’s Deep Space
Network,” Working Notes of the 1997 International
Workshop on Planning and Scheduling for Space
Exploration and Science.

Bresina, J., A. Jónsson, P. Morris, and K. Rajan (2005).
Mixed-Initiative Activity Planning for Mars Rovers,
IJCAI-05, page 1709.

Chien, S., R. Lam, Q. Vu (1997). “Resource Scheduling
for a Network of Communications Antennas,” IEEE
Aerospace Conference. Aspen, CO.

Chien, S., R. Sherwood, D. Tran, B. Cichy, G. Rabideau,
R. Castano, A. Davies, R. Lee, D. Mandl, S. Frye, B.
Trout, J. Hengemihle, J. D'Agostino, S. Shulman, S.
Ungar, T. Brakke, D. Boyer, J. VanGaasbeck, R. Greeley,
T. Doggett, V. Baker, J. Dohm, F. Ip (2004). “The EO-1
Autonomous Science Agent,” Proceedings of AAMAS.

Clement, B.J. and M.D. Johnston. The Deep Space
Network Scheduling Problem. in IAAI. 2005. Pittsburgh,
PA: AAAI Press.

Dechter, R., I. Meiri and J. Pearl (1991). “Temporal
Constraint Networks.” Artificial Intelligence 49: 61-96.

Eggemeyer, C., S. Grenander, S. Peters and A. Amador
(1997). Long Term Evolution of a Planning and
Scheduling Capability for Real Planetary Applications.
Working Notes of the First International Workshop on
Planning and Scheduling for Space, Oxnard, CA.

Frank, J., et al. Planning and Scheduling for Fleets of
Earth Observing Satellites. in I-SAIRAS 2001. 2001.

Kan, E.J., J. Rosas, and Q. Vu, Operations Mission
Planner - 26M User Guide Modified 1.0. 1996, JPL
Technical Document D-10092.

Muscettola, N., P. Nayak, B. Pell, and B. Williams
(1998). “Remote Agent: To Boldly Go Where No AI
System Has Gone Before,” Artificial Intelligence 103(1-
2):5-48, August.

Myers, K. L., P. A. Jarvis, W. M. Tyson, and M. J.
Wolverton. A Mixed-initiative Framework for Robust
Plan Sketching, In Proceedings of the 13thInternational
Conferences on AI Planning and Scheduling , Trento,
Italy, June, 2003.

Wilkins, D. E. Using the SIPE-2 Planning System: A
Manual for Version 4.3, Artificial Intelligence Center,
SRI, 1993. International, Menlo Park, CA.

Werntz, D., S. Loyola, and S. Zendejas. FASTER - A tool
for DSN forecasting and scheduling. in Proceedings of
9th AIAA Computing in Aerospace Conference

